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The Stokes resistance for a nearly spherical body 

S. F. EDWARDS? and G. J. PAPADOPOULOS$$ 
t Department of Theoretical Physics, University of Manchester 
$ Department of Mathematics, University of Salford 
MS.  received 25th October 1967 

Abstract. In order to calculate the Brownian motion of irregularly shaped objects, 
a first step is the solution for the Stokes flow past such objects, and a first step in this 
calculation is the development of a perturbation solution in the departure from 
spherical shape. A suitable variational approach is developed, from which it is shown 
that the expansion proceeds via a Green function which is obtained explicitly. In  
order to study statistical problems the expansion must be taken at least to second 
order in the departure from sphericity, and explicit solutions are given to this order. 
The  analysis basically involves studies of the 3-j symbols of spherical harmonic 
analysis. 

1. Introduction 

come to mind. Firstly, that of a body which is nearly spherical, i.e. has a surface 
As the first step in the study of Brownian motion or irregular objects two limiting cases 

where 

to ensure reality and l E l m l  < a. This problem is studied in this paper. The  other, that of a 
cylinder whose axis is a random-flight trajectory, will be studied in a subsequent paper. 
The  simplest attack on the flow past the surface (1.1) is to develop the fluid velocity as a 
series in the E .  Rather surprisingly this attitude seems only to have recently been con- 
sidered. Erma (1963) gives a systematic discussion of the potential arising from a non- 
spherical charge distribution, but the Stokes problem is considerably complicated by the 
vector nature of the velocity field. The  first systematic attack was made by Brenner (1964), 
using Lamb's general solution of Stokes' equation (Lamb 1932), and he gave an explicit 
formula to first order in the E .  The  calculation to higher order, though in principle routine, 
becomes highly involved. The  present paper develops the solution via a Routhian for the 
problem from which a matric Green function is developed as the iterative function, and by 
means of the use of 'angular momentum' analysis in terms of 3-j symbols the 
second-order solution is derived explicitly. Thus expressions are obtained which have a 
non-trivial average behaviour when, for example, the E are determined by the thermal 
distribution of shapes of a body which is spherical at absolute zero. This is of course only 
a first step to a full treatment of the problem. For convenience in the calculations one may 
consider the body stationary (instead of translating in the liquid with velocity V) and the 
liquid flowing with a streaming velocity -V. In  this picture Stokes' equations are 

r)V2V-VP = 0 
v.v = 0. 

( 1 . 3 ~ )  
(1.3b) 

The  last equation expresses the incompressibility condition of the fluid. The  boundary 
conditions are as follows: on the particle surface 

lim v(r) = 0 
r +  t o  any poin t  on S 
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and at infinity 
l imv(r)  = - V  
r - m  

(1.4b) 

Having obtained the solution of Stokes’ equations ( 1 . 3 ~ )  and (1.3b) appropriate to the 
boundary conditions ( 1 . 4 ~ )  and (1.44 we find the Stokes resistance through the formula 
for the force on the surface S :  

3 

Fi = 1 2 a i a d S a  (U. = 1 , 2 ’ 3 )  (1.5) 
s a=1 

where d S ,  are the components of the outward normal surface element of S and 

is the stress tensor for an incompressible fluid (Landau and Lifshitz 1960). Furthermore, 
the stress tensor uia is divergenceless throughout a fluid obeying Stokes’ equations, and 
therefore by Gauss’s theorem 

where S ,  is any closed surface containing the body surface S. For convenience in the 
calculations we shall take S ,  a spherical surface of radius R. From (1.5) and (1.6) it follows 
that 

3 

Fi = 1 2 at,dS,. ( 1  *7)  
S R  u = 1  

From (1.7) we obtain the Stokes resistance F as 

F =  -@V (1.8) 
where Q, is the expression for the translation friction tensor relative to the body system. 

In $ 2 we obtain the general solution of the equations of motion as a Fourier integral 
involving the undetermined function g(0, 4). 

In  5 3 we apply the general solution obtained in $ 2 in the case of the sphere Y = a and 
find that the Stokes resistance is proportional to the Yo ,  coefficient in the expansion of 
g(0, 4) in spherical harmonics. 

In  $ 4  we develop a perturbation method for the calculation of the solutions of the 
Stokes equations ( 1 . 3 ~ )  and (1.3b) appropriate to the conditions (1.4a) and (1.4b). 
Further, we establish an integral equation for the density function ( A ) g ( O ,  4) corresponding 
to the Xth correction, whose kernel is independent of the correction order, and find the 
Green matrix of this equation exactly. 

In  5 5 we establish that the Xth term of the series for the Stokes resistance is related 
to the component of (A)g(O,  4 )  by a simple proportionality relation. Furthermore, 

can be obtained from the velocity terms up to order A-1. This result was also 
obtained by Brenner in the case X = 1. Finally, we recover Brenner’s result for the first- 
order correction to the drag and produce a formula for the second-order correction in terms 
of the Green matrix and the unperturbed solution. This result is applicable to any order 
of perturbation. 

2. Variation method for the solution of Stokes’ equations 

suitable form, using Hamilton’s variation principle. Taking as Routhian density 
T o  fix the boundary conditions of the problem, we derive the general solution in a 

W(r) = -3~{( + ( ~ 5 , ) ~  + ( Vc3)’) (2.1) 
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and employing the incompressibility condition (1.3b), we reproduce Stokes’ equations as 
follows. T o  take into account the condition V . v = 0, we add to the Routhian density (2.1) 
the term P(r)V .v(r), where P(r) is the Lagrange multiplier for this constraint. It will turn 
out that P(r) is the hydrodynamic pressure. 

Now let us consider the functional 

”, 3 

I(v(r)) = J 1 -Qv 2 ( VvZ)’ + P(r)V. v 
k = l  

where the integration extends over the whole space of the fluid. By Hamilton’s principle 
the functional variation 61(v(r)) is taken zero for every variation of the velocity Sv(r), 
subject to the condition 6v(r) = 0 on the boundaries of the fluid, i.e. 

for 6v = 0 on the boundaries of integration and arbitrary elsewhere. Integrating (2.3) by 
parts we have 

where the integration in the first integral on the right-hand side of (2.4) extends over the 
surface bounding the fluid. However, this integral is zero since 6v on the fluid boundary is 
zero, and so equation (2.3) takes the form 

i ( v  V2v - VP).  Sv d3r = 0. (2.5) 

Since Sv is arbitrary everywhere apart from the boundaries, there follow Stokes’ 
equations (1.3a). This shows that the Routhian density (2.1), together with the incompres- 
sibility condition, leads to the correct equations of motion. 

Let us now derive, through Hamilton’s principle, the equations of motion of the fluid 
in the presence of the body bounded by the surface S. Let r = u(Q), where Q = (6 ,  $), 
be the vector form of equation (1.1). The  presence of the body in the infinite fluid imposes 
another constraint, namely that of the fluid velocity v(r) being zero at each point u(Q) of the 
surface S. This condition is expressed by adding to the integrand of (2.2) the term 

Jg(Q’).v(r)S{r- .(a’)) dQ’ 

where dQ‘ = sin 6’ dO‘d$‘ and the integration over Q’ extends over the whole solid angle 
47~. g(Q) is the Lagrange multiplier to account for the presence of the body. 

The  functional of v(r) to consider now is 

Applying Hamilton’s principle to the functional (2.7) and performing similar manipula- 
tions as with (2.2), we find 

v V 2 v - V P +  j g(Q’)S(r-u(Q’)}dQ’ = 0. (2.8) 

Equation (2.8) is identical with equation (2.5) everywhere outside the surface S, and 

Let us now solve the system of the equations of motion (2.8) and (1.3b). 
furthermore takes account of the surface S. 
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Taking the divergence of equation (2.8) and taking into account condition (1.3b), we 
find the Poisson-type equation 

r2P = V .s g(Q’)8{r-a(Q’)> dQ‘. (2.9) 

Then we have from equation (2.9) the solution for the pressure: 

exp[ik. {r - a(Q’))] 
k 2  

P(r) = Po-V .- E,(Q’)8{r’ - a(Q’)).- _. d3k d3r’ dQ’ (2.10) 

where the integration over r’, k’ covers the whole r‘ and k’ spaces. Integrating in 
equation (2.10) over r’ we obtain the expression for the pressure in Fourier form: 

exp[ik.{r-a(Q’)>] 
k2 

d3k dQ’. 
1 

P(r)  = Po - V .- 
(2r)3 

(2.11) 

Substituting the solution (2.11) for the pressure in equation (2.8) for the velocity, we 
obtain another Poisson-type equation, from which we obtain the solution for the velocity, 
which satisfies the incompressibility condition 

exp[ik , {r - a(  Q’))] 

k 2  
v(r) = vo+ d3k dQ’ 

exp[ik’.{r’-a(Q’))] 
d3k’ dQ’ , -- 

k k2 + vv . j G(Q‘) 

With some further manipulations we arrive at the Fourier form of the expression for the 
velocity : 

1 
v(r) = vo+ --I(? + V V . q )  exp[ik.{r-a(Q’)}]d3kdQ’. (2.13) 

(277137) k 

The solution (2.13) for the velocity is convenient to adapt the boundary conditions at 
infinity and the no-slip condition on the surface S by a suitable choice of the constants 
Po,  vo and density function E,(Q). 

3. Flow past a sphere 

system with origin at the centre of the sphere, is 
The vector form of the equation of a sphere of radius a, with respect to a Cartesian 

The problem now is to specify Po, vo and g(Q) in equations (2.11) and (2.13), so that the 
boundary conditions (1.4,~) and (1.4b) are satisfied, when a = ao(Q). Let us perform in 
this case the integration over k in formulae (2.11) and (2.13). We have 

i exp[ik. {r - ao(Q’)}] 
- d3k dQ’ 

k2 
P(r) = Po- - 

exp[ik .{r - ao(Q’)>] 
k2 

- d3k dQ’. (3.3). 

The  k integration can be performed by expressing the k quantities involved in (3.2) and 
(3.3) in spherical harmonics and making use of their orthonormality properties. 
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The following formulae involving the normalized complex spherical harmonics will be 
employed (Edmonds 1957) : 

exp[ik.{r-a,(Q')}] = 16n2 2 ( -  l ) l ' i ~ + ~ ~ , ( h y ) j l , ( k ~ )  
lm I'm' 

x Y;m(!2h) Ylm(Q>Y,, , ,(Qk) Y:m.(s2') (3.4) 

L + J  1 

J ' L M Y J K  = 2 2 (-1)" L 
l = I L - J I  m = - l  

where the symbol in front of Y, ,  in (3.5) denotes the Gaunt coefficient defined by 

[ f,) = j Y J K Y L M Y l m d Q *  

The Gaunt coefficient in terms of the 3-j symbols is expressed as (Rotenberg et al. 1959) 

(3 S a )  

(2J+l)(2L+1)(21+1) J L 1 J L 1 
4%- -1 ( K  M m)(O 0 0 ) .  (3*56) 

Using the formulae 
k1 = h sin ek cos hz = h sin 6, sin $bk, k, = h cos OIc (3.6) 

it is easy to express the vector k / k  and the matrix tiij- k ik j / k2  appearing in the expressions 
(3.2) and (3.3) for the pressure and velocity in terms of spherical harmonics. We have 

(3.7) 
where 

and 

where I is the 3 x 3  unit matrix and 

- 1  
- i j  0 

( 3 . 8 ~ )  
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I t  will be seen later on that the vectors p,, and the matrices I j  play a very important role 

With the aid of (3.5) and (3.7), the expression (3.2) for the pressure, after the integration 
in the perturbation expansions of the pressure-velocity field and the drag. 

over a,, takes the form 

@,.g(Q’)C (-1)’” Yl,(l2)Y~+,,,-,(n’)dR’ 
lm 

where by by we denote the row vector made by transposing the column vector pv. 

(Bateman 1960) 
We are interested in the exterior problem, i.e. in the region Y > a. I n  this case we have 

(3.10) 

where we have introduced the notation 

Using the formulae 

(3, l la)  

(3.12) 

(Bateman 1960), we obtain from (3.3), in a similar manner as with the pressure, the general 
expression for the velocity in the region Y > a:  

where we have introduced the notation 

(3 .13~)  
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In  the case of the interior problem the roles of a and r in the formulae (3.10) and (3.12) 
are interchanged. The  general solution in the whole region r > 0 is obtained by super- 
imposing the interior and exterior solutions. The  constants Po and vo come from the 
interior solution and are the only terms, which can be used for the exterior problem, with- 
out blowing up at infinity. The introduction of these constants in the formulae (3.2) and 
(3.3) makes it possible, for our purpose, to avoid the calculation of the solution for the 
interior problem. 

Let us now perform the integration over Q' in the expressions for the pressure and 
velocity, (3.11) and (3.13). Assuming 

(3.14) 

and bearing in mind the orthonormality relations of the spherical harmonics, we find the 
expressions for the pressure and velocity: 

(3.15) 

(3.16) 

It is obvious that terms in the expressions (3.15) and (3.16) containing 
g-2 -m-3  are zero since the associated Gaunt coefficients are zero. 

Let us now adapt (3.16) to the boundary conditions (1.4a) and (1.4b). For convenience 
we shall adopt the notation P(Y, Q) and v(r, a) for P(r) and v(r), respectively. The condi- 
tion lim V(Y, a) = -V as r 3 00 is satisfied by taking vo = -V since, as r -+ CO, all terms 
apart from vo on the right-hand side of (3.16) go to zero. The  condition lim V(Y, Q) = 0 as 
Y --f a+ 0 gives the following equation for g l m :  

1 2 1 

from which it follows that 

goo = # ( 4 ~ ) ~ ' ~ y a V ,  Elm = 0 for ( 1 ,  m)  # (0,O). (3.18) 

The  constant Po in the expression (3.15) for the pressure is fixed by external pressure 

Introducing (3.18) into (3.15) and (3.16), we obtain the expressions for the pressure and 
acting on the fluid at infinity, which we may assume to be zero. 

velocity fields around the sphere r = a: 

3 y a  
P ( S P h ) ( Y ,  sz)  = -y( pv.v)Ylv(sz) 

y =  - 1  2 Y 
(3.19) 

(3.20) 

Let us now compute the Stokes resistance to the sphere Y = a,  using formula (1.7). 
Since formula (1.7) holds for every R, however large, it follows that the only contributing 
terms of the stress tensor to the Stokes resistance are those of order l / r 2 ,  or what is the 
same, the contributing terms of the pressure are of order l / r 2  and of the velocity l /r  (see 
formula (1.5a) for the stress tensor). 
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Denoting by P, 6, and ai, the contributing parts of the pressure, velocity and stress 
tensor, we have in terms of Cartesian coordinates (xl, x2 ,  x3) 

(3 .21)  

( 3  2 2 )  

(3 .23)  

where, for the transformation from polar into Cartesian coordinates, we have used 
formulae (3 .7)  and (3.8). 

Employing formula (1.7) for the Stokes resistance with ai, given by (3.23) and taking 
into account that 

4T 
3 

JF d o  = -- 6,, 

we obtain the result 
F i ( s p h )  = - 6 ~ a y V ~ .  

( 3  2 4 )  

( 3  2 5 )  
From (3 .25)  and (3.18) we find that the coefficient goo of the solution for the sphere is 

F(SPh) = - g ( 4 n ) 1 / 2 ( s ~ h ) g 0 0 .  ( 3  -26 )  
As we shall see later on, this result enables one to develop a perturbation series for the 

Stokes resistance from a knowledge of the velocity field only. This will be the object of the 
subsequent sections. 

4. Perturbation method 

confined by the surface given in (l-l), in the form of a power series in elm, i.e. 

related to the Stokes force by 

We are seeking the expressions for the pressure and velocity field, around the body 

P = P(0) + P(1) + P(2) + , . . ( 4 . 1 ~ )  
v = v(o)+v( l '+v'2 '+  ... (4.lb) 

where P(O), do) is the solution of the equations of motion, satisfying the boundary condi- 
tions at infinity exactly, the conditions on the body surface being satisfied to zero order in 
elm. P(A) ,  v(?") ( A  = 1, 2, ...) are the corrections to first, second, ... order in elnl for the 
pressure and velocity. 

We take as zero-order approximation for P and v the solutions (3 .19)  and (3.20) for 
the sphere r = a, i.e. 

To find Po,), vO,) we argue as follows. v(r ,  Q) must satisfy the following conditions: 
(i) v(r ,  S Z )  together with P ( r ,  Q) solves the equations of motion ( 1 . 3 ~ )  and (1.3b). 
(ii) V(Y, Q) satisfies the conditions (1.4b) at infinity. 
(iii) V(Y, Q) becomes zero on S. 
These conditions can be satisfied by choosing for Po*), v ( ~ )  ( A  = 1, 2, ...) the expressions 

for the pressure and velocity given in (3 .15)  and (3.16) without the constant terms, i.e. with 
Po = 0, vo = 0 and suitably determined g(Q). We shall denote by (n)((Q) the g(!2) 
associated with the hth correction. Condition (i) is obviously satisfied since Fa), vca) solve 
the equations of motion, and so does any linear combination of them. Here we must note 
that, although FA), v ( ~ )  were derived on the assumption r > a, they hold as solutions for 
r < a, so that they can be used to describe the pressure-velocity field, slightly inside the 
surface Y = a as demanded by equation (1.1). Condition (ii) is satisfied by the zero-order 
term v(O) and is not violated by adding any of the d h )  since d a ) ( y ,  Q) -+ 0 as Y --f CO. 

( 4 4  pC0) = p ( S p h )  v(0) = v(sPh)). 
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Condition (iii), which in explicit form reads 

O = V(’)(Y, Q) + v(‘)(Y, Q) + v(~) (Y ,  a) + * * 17 = a  + ~ w ~ L M Y L , ( ~ )  (4.3) 
gives rise to the equations for the determination of (?Jg(Q) as follows. 

Expanding (4.3) about r = a, we have 

(4.4) 
v(O)(a, Q) = 0 since v(O)(r, Q) is the velocity for the sphere r = a. Bearing in mind 

that v ( ~ )  is of hth order in elm, we have, arranging (4.4) in ascending powers of e L M ,  the 
equations 

(4.54 

(4.5b) 

and so on. 
From the equation (4 .4~)  we find (l)g(Q>, which can be used for the determination of 

v(l). I n  a similar manner, having found v(I), we can proceed, finding from equation (4.4b) 
‘”E(Q), which leads to v ( ~ )  and so on. The  corresponding corrections for the pressure 

P C 2 )  ..., are also obtained from (l)g(Q), (2)g(Q), ... by utilizing formula (3.15) with 
Po = 0.  

At this stage it is useful to introduce the solution 
2 I 

With the aid of (4.6) the hth equation (4.5) can be written 

JA( L2 I Q’)(’)g( Q ’) dR’ = quca-’)W( Q) 

since 

lim V(~)(Y,  Q) = A(Q[ Q’)g(Q’) dR’, as Y + a  

(4.7) 

as one can easily see from (3.13). 
The  integral equation (4.7) plays a predominant role in the development of the perturba- 

tion series for the pressure-velocity field. The  Green matrix G(Q’1R”) of equation (4.7), 
defined by the fundamental equation associated with it : 

J A ( R ~ R ~ ) G ( R ~ ~ w )  m’ = q ~ -  sz.) = 2 I Y L M ( Q ) Y L M ( Q Z ” )  

(A)E,(Q’) = qa J G(R’~W)(’V-~)W(W) d W .  

(4.8) 
L M  

determines (a)g(R) through 

(4.9) 



182 S. F. Edwards and G. J. Papadopoulos 

The function defined in (4.9) is easily seen to satisfy equation (4.7). By multiplying 
both members of equation (4.9) by A(Q1Q’) and integrating over LR we obtain, by virtue of 
equation (4.8)) on the right-hand side Ta(A- l )W(Q) .  

To solve equation (4.8) we use as trial solution the matrix function 

G(LR’IR”) = 2 g“”n”Y~m(LR’)YI~(RN) 
lm,m’ 

(4.10) 

where gLmvm’ is a 3 x 3  matrix independent of Q‘, Q“, which we shall determine so that 
(4.10) satisfies equation (4.8). 

Introducing (4.10) into (4.8) and performing the integration over a’, we take 

1 2 

2 2 ( + a o j I + p i L M l . ) - - . - -  ’ 2 L + 1  g L ” , M - J Y  L M ( Q ) Y z m ( Q ” )  
L M , m  j =  - 2  

= 2 IamMYLdQ)J’:m(Q”) (4.11) 

from which, owing to the orthogonality of the spherical harmonics, we obtain the dis- 
placement equations in M :  

L M , m  

2 

2 ( ~ s O j I + p i L M I j ) g L ” M - j  = (2L + l ) a m M I  (4.12) 
j =  - 2  

( L  = 0, 1 , 2 ,  ...); (m ,  M = - L ,  ( - L + l ) ,  ..., L-1 ,L ) .  

Using the expressions (3.80) for the matrices .Ii and introducing the notation 

we write the matrix equations in (4.19) in component form as follows: 
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Introducing the transformation 

(4.16) 
and eliminating ggjLmvM-l and g3jLm*M+1 from equations ( 4 . 1 5 ~ )  and (4.1%) through 
equation (4.15c), we reach the result 

Z j L m , M  gl,Lm*M+ igZjLmlM, WLmoM = gljLm, M - ig2 j L m o  M 

where 

(4.17a) 
(4.176) 

(4.1 8u) 

(4.18b) 

(4.1 8c) 

(4.18d) 
It is easy now to decouple equations ( 4 . 1 7 ~ )  and (4.176), and the result is 

BiLm.M+ALMD , L m , M - 2  

( 4 . 1 9 ~ )  Z j L m , M  = 1 -ALMCLM-2 

(4.196) 

With the aid of transformation (4.16) and, for example, (4.15) we express the matrix 
elements gljLmBM in terms of the quantities A, B, C and D, which are given in terms of the 
Gaunt coefficients. We have 

L m ,  M = &( Z j L m ,  M + W j L m 3  M )  g1 j 
1 ( 4 . 2 0 ~ )  

L m ,  M + ALMD .Lm. M - 2  DjLm, M + CL M B  , L m ,  M +  2 
-+ 1 -ALMCLM-2 1 - CLMALMf2 

W j L m .  ") gZj" = -( ZjLm. M - 1 
2i 

(4.206) 
B j L m . M +  ALMD L m ,  M - 2  DjLm, M + CLMB ,Lm,  M f 2  

j 

2i 1 -ALMCLM-2 1 -CLMALM+2 

( 4 . 2 0 ~ )  

The expressions (4.20a), (4.20b) and (4 .20~)  for the matrix elements glfLmsM solve the 
problem of finding the Green matrix function defined in (4.8) completely, and consequently 
the problem of finding the velocity-pressure field to any desired order, according to the 
technique developed in this section. 
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It is easy to see from equation (4.12) that 
g p , o  = "8 2 ti' 

Next we shall proceed to find the perturbation expressions for the Stokes resistance. 
(4.21) 

5. The Stokes resistance 
Introducing the series (4 .1~)  and (4.lb) for the pressure and velocity field outside the 

surface given by equation (1) into the right-hand side of equation (1.7) for the Stokes re- 
sistance, we obtain, owing to the linearity of the stress tensor in the pressure and velocity 
components, the result 

where F'O) is the force on the sphere Y = a and F(A) ( A  = 1,2, ...) is the Xth correction due 
to the terms PIz), vOJ. Applying the same reasoning as with the calculation of the resistance 
to the sphere, we find that the only contributing terms of the pressure correction PA) are 
of order l/r2, and of the velocity 4') are those of order l /r ,  From (3.15) and (3.16) we 
have for the contributing parts of pressure and velocity corrections the expressions 

Fi = F,'o)+F,'1'+F'2)+ t ... (5.1) 

where we have utilized the properties of the Gaunt coefficient xYLm in (3.11a), 

where in (5.3) we have utilized the properties of the symbols (3.13~). 
is the same for 

every order of perturbation (A = 0, 1, 2, ...). Then, owing to the linearity of the stress 
tensor ala0.) in FA), 

It is easy to see that the functional dependence of PA), +CA) on 

and the linearity of FA), in (A)goo,  it follows that 

goo (5.4) F(A) = K(A). 

where K is a 3 x 3 matrix independent of A. Comparing (5.4) with (3.26), we find 

and therefore 

Thus the problem of finding the Xth perturbation term of the Stokes resistance is reduced 
to that of finding the Xth goo .  

Writing (i*)W(Q) in the form 

(A)W(Q) = 2 (n)WlmY,,(Q) (5.8) 
lm 

and utilizing (4.10) for the Green matrix function, we find from formula (4.9) for ("g(Q) 
the result for the coefficient ( l ) g o 0 :  

(5.9) cn,goo = 7agoo,o (A - 1,woo = j q a ( A  - 1,woo 

where we have used the relation (4.21). Combining (5.9) and (5.7) we obtain 
F ( A )  = - g7a(4T)112 ( A  - i)woo, (5.10) 

From formulae (5.10) and (4.5a) and (4.5b) it follows that the hth correction to the 
This result was also Stokes resistance comes from a knowledge of v(O), 

obtained by Brenner for the first-order correction. 
..., 
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Let us now calculate the first-order correction to the drag. T o  do this, we need (O)Wo0. 
We have from (4.5a) 

x (i L ) I i v y l , M + j ( Q ) .  
I - M - j  

From (5.11) we easily find that 

(5.11) 

(5.12) 

Without loss of generality we take c o o  = 0, as this can be incorporated into the radius 

Employing the reality condition (1.2) for the coefficients and the definition (3.8a) for 
a in equation (1). 

the matrices Ii we find by means of (5.10) that F(l) is given by 

( 5 . 1 3 )  

This is an equivalent form of Brenner's result (1964). 
So the fi&-order correction to 

harmonic. 
For the second-order correction 

utilizing equation (4.5b) as follows. 
velocity, 

r = a L M  

the drag in;olvei only the coefficients of the second 

to the force we need the quantity (l)Wo0, which we find 
We have the term of ( ' )W(Q),  due to the zero-order 

15 2 

a2 L M  L ' M '  j= - 2  
- -- 2 2 c IjvyZj(n)YLM(Q)YL,,,(Q). (5,14) 

The coefficient of Yo, in the linear expansion in Y,, of the first term on the right-hand 
side of (5.14) comes from L' = L and M' = - M ,  and it is 

(5.14a) 

The second term on the right-hand side of (5.14) gives as coefficient of Yo ,  the expression 

Here we have taken into account that only those Y L f M , ,  YLM with L' differing from L 
at most by 2 can produce a spherical harmonic of degree 2 which can be combined with 
Y 2 j  to give Yoo.  

It remains to find the coefficient of Y o ,  of the second term on the right-hand side of 
(4.5 b). 
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From (3.16) and (4.5a) we have 

(5.16) 
From (5.16) we find that the coefficient of Yo, in the linear expansion in Y,, is 

Employing formula (4.9) we find that 
L 

(5.17) 

With the aid of formula (5.17) we are able to express the unknown quantities E l m  in (5.16d) 
in terms of the matricesgzmsm’ and the vectors (0)Wim. (l)WOO is the sum of the expressions 
(5.14a), (5.14b) and (5.16a): 

2 .i 
L M 

L + k  -&l-. 
rjv 

(5.18) 

Combining (5.10) and (5.18) we obtain the expression for the second-order correction 
to the drag: 
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From (5.19) it follows that there is no contribution from the last term to the second- 
order correction of the drag from the terms elm Y,,, since g-lmSm' is zero. T h e  contribution 
from the harmonics of degree 2 involves only the matrix goo*o whose expression is very 
simple (see (4.21)). 

Here we note that all the second-order correction to the drag is expressed in terms of 
quantities related to the flow round the sphere r = a and the matrices gLMSm and I j .  This 
result is true for any order of correction. 

The  calculation of the drag and therefore of the friction matrix by means of (1.8), in 
the case of a deformed spherical body, provides a more realistic approach to the Brownian 
motion of spherical-like particles. The authors hope to tackle this matter in a later publi- 
cation. 
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